CALCULATION OF NEAR-FIELD MOLECULAR
INTERACTIONS IN POLYMERS
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The role of near-field and far-field interactions in determining the conformative mobility of
macromolecules is analyzed here. An algorithm is proposed for finding the global minimum
energy of near-field intramolecular interactions.

The calculation of transport processes in certain types of molecular structures is of great interest,
as it relates to the problem of producing semipermeable membranes.

Transport processes in complex molecular structurés such as polymers, for instance, are deter-
mined largely by the nature of interactions between molecules of the polymer and its conformation.

Intramolecular interactions, which determine the conformative stability of its various spatial struc-
tures, are usually classified according to the distance between the interacting groups along the principal
valence chain. Effects within chain fragments containing 1-3 radicals are usually defined as near-field
interactions. It is convenient to single out this class of interactions, from the interpretive point of view,
inasmuch as the spatial structure of a molecule which variously combines stable conformations of its
fragments has properties that greatly simplify many problems in the configuration statistics and the con-
formation analysis of such molecules, at least within the qualitative scope.

When considering the intramolecular energy of a polymer molecule in terms of monomer—monomer
interactions, one can conveniently describe these in matrix form: the diagonal matrix elements u;; repre-
sent energies determined by means of potential maps of the respective monomers, while the matrix ele-
ments uj j+ represent energies of interaction between adjacent monomers, efc.

It is well known that conformations even by monomer elements in a row arrangement correlate very
weakly, as a rule, because of coexisting stereostructures in the framework [1]. Thus, the contributions
of interactions u;; are almost completely determined by the nature of the contact between the i-th and j-th
monomer elements. The relative location of i~th and j-th monomer elements is obviously becoming less
constrained kinematically, meanwhile, as the indices i and j move farther apart in sequence.

This can be explained as follows. Let us assume that a small displacement R (A) of the k-th func-
tional group relative to the j-th conformation
%
D = . (1
Pn

can be effected so that the sum of the squares of angular displacements due to internal rotations (@-3')?
will be minimum,

With small displacements described by the expression [3]

. koo . .
Rjk - 2(9n+ En X pk)A(Pn (2)

n=j
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and with

we have
R}, ~ ADTAD, (4)

where the elements of matrix T are

ty, = B +Eix ;) (0, - F, % p; ) for ik
0 for i<k
The thus formulated condition can be written as
v (AT — pABTAD) = AD — pTAD = 0; ()
where p is a Lagrangian multiplier.

The sought solution will be an eigenvector Y which corresponds to the eigenvalue 1/u of matrix T,
where

and for a unitary Ry

On the assumption that u does not depend on n, as in the case of a block-diagonal matrix T, for ex-
ample, the mean "compensating™ change in the rotation angle Ag; is proportional to 1/vn.

If T is a block matrix, then 1/u increases proportionally to n and

1 9
g @ ~ T . ( )
In actual structures the relation should be somewhere intermediate.

If, instead of A®%, the deformation energy
AU ~ ADAAD (10)

is minimized (here A denotes the matrix of the second derivatives), then an analogous result will be ob-
tained for matrix A7IT,

Another estimate can be made using, instead of Eq. (6), the requirement that the sum of the squares
of changes in the coordinates of many atoms be minimum for any given change of the i-th angle by Ag;.
This quantity may be approximated by

P~ AD S'A O, (11)

where elements of matrix S' are defined as
"A — p— -— 0 — — pu— N
Sii= X N0+ Ei xp, ) (8; +E,; xp, ) (12)

On the basis of the concepts developed in [4], the magnitudes of the component vectors in parentheses

are assumed to have a normal distribution with the dispersion ¢?,

From the condition
vP=SAD =0 (13)

we find

SF; = Ag,A, - (14)
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where .
- A(Pl ;h i

Fo= 2% ptis A=| M [, p2i,

Ag, M
and matrix S is obtained from matrix S' by deleting the i-th row and the i-th column. If is not difficult to

ascertain that the diagonal elements Sjj have a x* distribution with 3(n—i) degrees of freedom and with the
mean value of §j; equal to 3¢%(n—i).

The dispersion of element §;; is

O%ij =c*(n—1i)(n—j), (15)
and the dispersion of ratio A¢y/Ag; is
hgy, A e (16)

by virtue of matrix S being a nearly diagonal one.

Expression (16) relates the distribution of Agy to the quantity |k—il and may be used in a feasibility
study of "compensating” for a deformation of the spatial structure.

Concepts of this sort point to the feasibility of describing the said interactions thoroughly, without a
loss of accuracy in the results; since it is the calculation of far-field interactions which takes up most of
the machine time necessary for computing the conformations of a rather unwieldy object, on the other hand,
it seems worthwhile to introduce here effective radical-radical potentials and, at the same time, to retain
the former level of detailization in describing the near-field interactions.

According to the calculations in [4], widening the "zone" of accountable interactions along the prin-
cipal valence chain, i.e., accounting for the typei «<— i + 1 and i «— i + 2 effects will result in a signifi-
cant change in the estimate of local spatial conditions, as compared to the map of 2 monomer element,
Accounting for near-field interactions within oligomer fragments will bring out a new aspect of the situa-
tion, namely the partial overlapping of such fragments. By the same token, the conformations of all
radicals appear interdependent and the energy of near-field interactions becomes a nontrivial characteris-
tic of molecule conformations, unlike, for example, the sum of the energies of separate monomer ele-
ments which correspond to a given conformation.

Let Uk(si, Ei+1, cees $i+k-1) denote the cohformation energy of a fragment containing k monomer
elements in some sequence, beginning from the i-th, and let
[ @)
s
D= | . (17)
¢
(AER
represent the set of internal-rotation angles corresponding to the j-th monomer element.- The energy of
near-field interactions will be expressed as

E®@,®,,.., D,)=U,(®, D, ..., T}

q3f+k—1) - Uk-—l ((T)J'» a)j+1' ] (T)j:rh—z )J (18)

When k is small, the procedure for minimizing E with respect to all internal-rotation angles is
rather simple. As in statistical physics of polymers, accounting for near-field interactions only has,
analogously, made it possible to use the already available formalism of the Easing model, which appears
to provide some concepts of dynamic programing [2] suitable here almost without any modification.
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We seek the global minimum E, i.e., the quantity

minE (@, @y, ..., D)
= min min ... min{Uh(ﬁl, @, ..., 0,)
DB, 3, ‘ -
k41 — -
=+ Z [Uh ((DJ" CI).i+1’ 4 (I)J+k—1 )
j=
- Uk 1 (CDJ’ (Dj+1’ ’ J+k-2 )]}
= minmin ... min {Uk (@, @, ..., D)
o, @, Dy,
k41 o — _ __
<+ min min ... min ¥ U @0, ... ®yy) —Upy (0 ... Dypy )] } . (19)
T Dpyy Pn j=2
We introduce the function
ei ((—Dz+17 61+9) . 1) a—)l.;,k )
= min min ... min{U,‘l(@1 L@y )
@, O, D;
=+ 2 [Uk (61 tr (z)_j-!-k—l ) _Uh-—,[ (éj e 6j+l:.2 )] } . (20)
It is not difficult to prove that
ei+l (6i+2 o (_Di+k )
— min min ... minjU, (@, ... @, )
D, @ By
i

U@y e B ) —Usa (Brs -+ Braa s
i.e.,
0;,, = min [’ei ((Di+1 S a)i+k ) ‘
LU @y o Boge) —Upy Dy oo Dy - (1)
Obviously, '
=minU (@, @,, ..., Dy ). (22)

o, _
The authors propose to solve Eq. (19) by successive computations of functions 6;.

The minimization requirement does formally limit the dimensionality of the problem of calculating
any 8; to a level which corresponds to the dimensionality of the potential function for a molecular frag-
ment cons1st1ng of k monomer elements, but in a direct numerical implementation of each separate varia-
tional procedure this requirement is, apparently, irrelevant. An important merit of the algorithm de-

_scribed here is that, if the global minimum for a fragment consisting of n radicals differs only locally in
the angles <I>1 . <I>n from the global minimum for a fragment consisting of n + 1 radicals, the final results
of this computation will be the global minimum E.

It must be emphasized that we deal here with a situation where there is no interaction between con-
formations of monomer elements n and n + k through the framework or as a result of correlated changes
in the conformations of the lateral radical groups in intermediate monomer elements. Already for k > 3
such effects appear improbable {3].
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The described algorithm can be easily used for calculating the energy of near-field interactions with
the aid of the following combinatorial scheme.

Suppose we have determined all stable conformations in relatively small fragments of a molecular
chain by successive detaching from it k radicals. This procedure must then be repeated for all fragments
of a molecule which contain one less monomer element. The energy of near-field inferactions (up to
i =1 + k-1 interactions inclusively) in the entire molecule whose conformation is given on the potential
map of each monomer element, accurately down to the local minimum, can be evaluated from (18) with
the values for each Uy, Uyi.4 taken for stable oligomer conformations corresponding toone another (radical
by radical) within the intersection range and within an accuracy down to the vicinity of the local minimum.

The following comment is in order here, with regard to the estimated error in calculating the near-
field interactions in the approximate manner shown here. Let the internal-rotation angles

Tl
T,=| - (23)
“
refer to the first of the overlapping fragments, let
s
e (24)
T
refer to the second one, and let
T
To=| - (25)
:tl

t

refer to their intersection.
At some local minimum, the energy of the first two fragments will be written as
= UlTa),
Uy U(Ts).

If '-fgb denotes the conformation of the central fragment, close to 'T‘a and Tb, then the energy of near-
field interactions will be

(26)

E=US§+ Ul —U (T3] (27)

accurately down to the effect of angles T, T b—rfo on U% and U?

It can be shown that among any Tab, ab conformation pairs of intersecting fragments, the point
(T“b + Tab)/z used for T b yields the smallest error. Indeed, with A denoting the matrix of second deri-
vatives, the total error of the estimate made here is

AE = (T —Toy) ATy —Tap) + (Toy — Tar) A (Top — Tap). (28)
Minimizing AE with respect to Tob, we obtain
(To —Tas) + (Thy— Tap) ==

_ _ _ 29
ﬁpé4m+my )

Experience with calculations of this kind shows that satisfactory results are also obtained by an inde-
pendent minimization of the intersection fragment,

A more thorough analysis of specific results obtained by this procedure will be made in subsequent
articles. ‘
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